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The two-dimensional pressure driven flow of non-Newtonian power-law fluids in self-affine fracture chan-
nels at finite Reynolds number is calculated. The channels have constant mean aperture and two values �

=0.5 and 0.8 of the Hurst exponent are considered. The calculation is based on the lattice-Boltzmann method,
using a different tecnique to obtain a power-law variation in viscosity, and the behavior of shear-thinning,
Newtonian, and shear-thickening liquids is compared. Local aspects of the flow fields, such as maximum
velocity and pressure fluctuations, are studied, and the non-Newtonian fluids are compared to the �previously
studied� Newtonian case. We find a scaling relation between permeability and mean aperture in the low
Reynolds number regime, generalizing an earlier result for Newtonian fluids. As the Reynolds number in-
creases, we observe the same sequence of transitions to nonlinearity found in intergranular porous media.
Furthermore, the permeability results may be collapsed into a master curve of friction factor vs Reynolds
number, using a scaling similar to that employed for power-law fluids in porous media.
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I. INTRODUCTION

An understanding of flow and transport processes in geo-
logically disordered media is necessary for the efficient ex-
traction of fluids from underground hydrocarbon reservoirs.
Situations where flow proceeds through networks of con-
nected fractures are particularly attractive because the
throughput is generally much higher than may be achieved
through intergranular porosity alone �1–4�. An important fea-
ture of subsurface fractures, which considerably complicates
the problem, is that the surfaces of naturally fractured rocks
are not smooth or even randomly rough, but rather are highly
correlated self-affine fractals �5�. A second complication in
the analysis is that typical reservoir fluids are often com-
pound mixtures, which exhibit non-Newtonian flow behav-
iors such as shear-thinning or shear-thickening. Yet a third
difficulty is that the subsurface fracture flow often involves
much higher velocities than in the intergranular case, and the
common simplification of low-Reynolds number linear flow
is inapplicable.

In this paper we use lattice Boltzmann calculations to elu-
cidate the combined effects of self-affinity, nonlinear rheol-
ogy, and finite inertia in fluid flow through a single fracture.
Previous authors have considered subsets of these complica-
tions, but not all three simultaneously. The flow of Newton-
ian fluids in self-affine fractures at both low �6,7� and finite
�8� Re has an extensive literature. Some controlled experi-
ments on shear-thinning fluids in self-affine fractures at low
Re have been reported �9�. Lastly, experiments and phenom-
enological models for nonlinear fluid motion in intergranular
porous media at various Re are available �10�. We anticipate
that flow in a fracture can be characterized in a manner simi-
lar to the latter problem, since in both cases the key effect is
that the random solid boundary of the flow domain causes
streamlines to wind around. One simplification which we can
exploit, however, is to focus on two-dimensional flows. It is
well-known that the flow of a single fluid in a straight chan-

nel differs only in detail between two- and three-dimensional
cases, and furthermore, in porous media flow in the analo-
gous intergranular case, one sees the same flow laws for both
two- and three-dimensional geometries.

The approach taken in the paper follows the lines of our
previous studies of permeability �6� and transport �7� in
self-affine fractures based on the lattice-Boltzmann method,
along with a procedure for incorporating power-law viscosity
variation similar to that developed previously �11�. The dis-
cussion of inertial effects is influenced by previous studies
for the case of a Newtonian fluid in intergranular porous
media �8�. The fracture surface is generated numerically by
Fourier transform algorithm and discretized on the regular
lattice used in the flow problem. The upper and lower frac-
ture surfaces bound the allowed nodes in the flow domain, a
bounce-back condition enforces the no-slip boundary condi-
tion, and constant forcing provides a pressure driven flow.
For power-law fluids, the lattice-Boltzmann relaxation time
is adjusted locally in space and time to provide the desired
relation between stress and strain. The relation between im-
posed pressure drop and total fluid flux provides the perme-
ability, and the local flow fields are analyzed to discuss the
velocity, pressure, and shear stress variations. Some back-
ground on the flow geometry and calculational method is
presented in Sec. II, the local analysis of the flow fields in
Sec. III, the discussion of permeability is in Sec. IV, and we
summarize in Sec. V.

II. BACKGROUND

A. Self-affine roughness

In this section we review the characterization of self-
affine fractures and their numerical implementation. We con-
sider a fracture surface without overhangs, i.e., the surface
height h�x ,y� is a single-valued function of the two coordi-
nates r= �x ,y� lying in the mean plane of the surface. A
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self-affine fractal surface is one which displays different scal-
ing along the different spatial directions �12�, a statistical
self-similarity under the transformation

x → �x and y → �y ⇒ h�r� → ��h�r� , �1�

where � is the Hurst or roughness exponent. Observations of
a variety of naturally fractured rock surfaces in different
fracture modes yield just two common values of �, approxi-
mately 0.5 and 0.8. We further assume that the surface has
spatial isotropy in its mean plane. The surface is further char-
acterized by the amplitude of the roughness, or equivalently
the prefactor C0 in the height-height correlation function,

��h�r + �� − h�r��2� = C0����/ � �2�, �2�

where the intrinsic length scale � might be the grain size in
experiment or the lattice spacing in a calculation. In practice
we generate self-affine surfaces using a Fourier synthesis
method �13� as in �6�.

A self-affine fracture channel is made of two complemen-
tary self-affine surfaces separated by a gap, and in some
cases the surfaces are shifted relative to each other parallel to
the mean plane. The statistical properties of the fracture are
specified by the Hurst exponent, the mean aperture between
two surfaces, the shift distance, if any, and by the amplitude
of the roughness. The height fluctuations of a single self-
affine surface increase with its lateral extent L, so that the
difference between the maximum and minimum heights
scales as �L / � ��, and we consider the limit H�R�L, as
shown for a typical fracture in Fig. 1.

Note that the effective flow diameter of the fracture varies
along its length and can be much smaller than the mean
aperture, due to the tortuosity of the channel. When a lateral
shift is present, the aperture varies locally as well, and fur-
thermore if H is too small the sides of the fracture may
overlap.

B. Lattice-Boltzmann method

Since the flow domain is bounded by highly irregular sur-
faces, the lattice Boltzmann method �14� is particularly con-
venient for fluid mechanical calculations since the excluded
solid region may be simply specified by a mask. If f i�x , t� is
the velocity distribution function �VDF� for particles moving
in direction i at lattice site x at time t, then the discrete
Boltzmann equation, which evolves the distribution, is

f i�x + ei,t + 1� = f i�x,t� + �i�f�x,t�� , �3�

Here the ei are unit lattice vectors, the lattice spacing and the
time step are both set equal to one, �i�f�x , t�� is collision
operator which redistributes the VDF along different direc-
tions, and the spatial and temporal step discretizes in a single
unit. To recover the Navier-Stokes equation of fluid flow
starting from the Boltzmann equation, moments of the VDF
satisfy the constraints

� = �i f i, �u = �
i

f iei, � = − �cs
2I − 	1 −

1

2	

�

i

f ieiei,

�4�

which relate the distribution function to the continuum den-
sity, velocity, and stress fields, and where cs is the sound
speed. In practice, the computed velocities are much less
than the speed of sound, and the liquid is effectively incom-
pressible. The collision operator is treated in the Bhatnagar-
Gross-Krook �BGK� approximation using a single character-
istic relaxation time 	,

�i�f�x,t�� = −
1

	
�f i�x,t� − f i

eq�x,t�� , �5�

where f i
eq�x , t� is the equilibrium distribution function. The

relaxation time 	 is related to the kinematic viscosity of the
fluid by 
= �2	−1� /6. To simulate a constant pressure gradi-
ent we add a constant body force term to the right-hand side
of Eq. �3�. More details may be found in �14�, and a recent
review of flow simulations in this context is presented by
Verberg and Ladd �15�.

C. Power-law fluids

The basic idea in extending the lattice Boltzmann method
to power-law fluids was presented by Aharonov and Roth-
man �16� and consists of adjusting the relaxation time 	 lo-
cally so as to achieve the desired ratio of stress-to-strain rate.
Here we consider power-law fluids using a generalized New-
tonian model, as in �11�, where the relation between the
stress tensor �� and the strain rate tensor D�=1 /2��u�

+��u� is similar to that for Newtonian fluids, ��=2�D�,
but the local viscosity � is a function of the invariants of the
strain rate tensor. We consider power-law fluids, �=m�̇n−1,
where the case 0�n�1 corresponds to shear-thinning, n
�1 corresponds to shear-thickening, and n=1 recovers lin-
ear Newtonian fluids, where the local shear rate �̇ is related
to the second invariant of Dij via �̇= �2D :D�1/2. The proce-
dure in �11� was to obtain the strain rate tensor by numerical
differentiation of the previously calculated velocity field,
then determine the appropriate local viscosity and thence the
local relaxation time. Here we adopt a different procedure: in
the lattice Boltzmann method the strain rate tensor is directly
related to the velocity distribution function by �17�

D� = −
3

2�	
�

i

�f i − f i
eq�ei�ei; �6�

which should in turn equal �� /2�, there is a constraint on
the f i which is solved by iteration.

FIG. 1. �Color online� Geometry of a typical self-affine fracture
composed of two complementary self-affine surfaces with �=0.8.
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The simple power-law form for the viscosity could lead to
divergences in regions where �̇ becomes small, but no prob-
lems occurred in the present calculations. More generally,
one may easily modify the rheological law to incorporate a
�realistic� plateau at low shear rates, as in �11�.

To validate the formulation of power-law fluids given
above, we calculate the velocity profile for pressure-driven
flow in a smooth-walled channel of constant aperture �a
Hele-Shaw cell�, which may be compared to an analytic so-
lution of the Navier-Stokes equation. Applying a pressure
gradient �P /L=−G in the x direction, the velocity for a
power-law fluid with rheological parameters m ,n�0 as
above in a channel of width H is

ux�y� =
n

n + 1
	G

m

1/n	�H

2
��n+1�/n

− �H

2
− y��n+1�/n
 . �7�

We also record the mean velocity ū and the fluid flux Q �per
unit length in the passive third direction�, which will be use-
ful below:

Q = Hū = �
0

H

dyux�y� =
n

2n + 1
	H2

2

	GH

2m

1/n

. �8�

In the simulation, we begin with zero velocity and integrate
Eq. �3� to steady state, using the convergence criterion

� = �
x

u�x,t� − u�x,t − 1�
u�x,t�

� 1.0 � 10−6. �9�

For power-law indices n=0.75, 1.0, and 1.25, m=0.01,
and pressure gradient G=1�10−6 we obtain the profiles
shown in Fig. 2, which agree with theory. In practice, as with
any numerical method, computational instabilities may occur
for substantially different values of the pressure gradient and
fluid index, but the algorithm could be extended there using
techniques such as multitime step relaxation for the local
shear viscosity �18�.

III. LOCAL ANALYSIS OF THE FLOW FIELD

We wish to examine how the local flow behavior varies
with the rheology of the fluid at different geometrical fea-
tures of a self-affine channel. We focus on a single realiza-
tion of the fracture, shown in Fig. 1, and vary the power-law
index n and the pressure gradient G. The complete simula-
tion box has length L=256 in the flow direction and width
W=80, in terms of the �unit� lattice spacing, and the �con-
stant� vertical aperture is H=20. A uniform pressure gradient
is applied everywhere along the channel, as above, and peri-
odic boundary conditions are applied in the flow direction.
The local minimum in the effective width �normal to the
average flow� occurs around x=55, 110, and 240 where mass
conservation implies the velocity magnitude will be a maxi-
mum, irrespective of the rheology of the fluid. In Fig. 3, we
show velocity fields and streamlines for the three fluids along
a segment of the fracture channel 20�x�100 in Fig. 1
which includes a constriction for applied pressure gradient
G=1�10−6. As we see, the streamlines are tortuous and very
roughly follow the channel walls, although recirculating ed-

dies �closed vortices� may occur where the channel exhibits
side branches or dead-end regions. Indeed, at the present
flow rate an eddy appears in the shear-thickening case but
not for the others, presumably because the velocities are
higher in that case.

A. Velocity field

First we examine the variation of maximum absolute ve-
locity along the channel, in order to show how the fluid
rheology influences the earlier results of Skjetne et al. �8� for
the Newtonian case. More precisely, for each x along the
channel we compute the maximum over y of �u�x ,y��, al-
though we would have reached the same qualitative conclu-
sions had we considered the maximum over y of ux�x ,y�.
Calculations were performed for three values of the pressure
gradient, G=1�10−6, 5�10−5, and 2�10−4, which corre-
spond to Reynolds numbers Re=0.95, 37.0, and 92.7, respec-
tively, for the Newtonian fluid. Since the viscosity varies
within the channel for the shear thinning and thickening flu-
ids, there is no unique definition of Re in those cases, al-
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FIG. 2. �Color online� Velocity profiles of power-law fluids with
m=0.01, n=0.75, 1.0, and 1.25 in a Hele-Shaw cell with pressure
gradient G=1�10−6. The points are simulation results while the
solid lines are the analytical solution in Eq. �7�. The maximum
velocities for the three fluids are umax=0.006, 0.048, and 0.169,
respectively.
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though a convenient choice will be introduced in Sec. IV for
scaling purposes.

The resulting plots of maximum velocity are shown in
Fig. 4, where each velocity is normalized by the average
streamwise flow velocity ūx �referred to as the interstitial
velocity u* in �8��, which equals the flux divided by the
channel width. Obvious peaks appear at the positions of the
visible constrictions in the channel near x=55, 110, and 240,
reflecting the narrowed aperture there. The normalized peak
heights are fairly insensitive to the Reynolds number, al-
though away from the peaks the trend is for maximum ve-
locity to increases with Re. Note that for a flat channel, the
normalized maximum absolute velocity would equal 1.5, so
the values of 5 or more seen here are a substantial enhance-
ment. The peaks are not all closely correlated with channel
constrictions, however, near x=70 and 130 maximum veloc-
ity peaks occur, but at these locations the channel is expand-
ing just downstream of a constriction. It is also possible to
calculate a “maximum velocity trajectory,” following �8�, as

the set of �x ,y� grid points which at each x has the y value
corresponding to the position where the maximum velocity
occurs. For the most part our observations concerning the
behavior of these trajectories is similar to that reported in
Ref. �8�, but we do not observe the curvilinear length of this
trajectory decreasing monotonically with Re.

Comparing the other fluids to the Newtonian case, we see
in Fig. 4 that the global maximum absolute velocity always
occurs at the narrowest constriction near x=110 and the
other primary peaks always occur at the same positions, x
=55 and 240, as well. Furthermore, each peak has roughly
the same �normalized� velocity value. In the shear-thinning
case, both the variation in x away from the peaks-
constrictions and the variation with pressure gradient are
weaker than in the other cases, which may be attributed to
the fact that typical velocities in the fracture are smaller in
this case, and inertial effects play a weaker role. In the shear-

(b)
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(c)

FIG. 3. �Color online� Segment of velocity vector field with
streamlines of the flow for power-law fluid with m=0.01, n=0.75
�top�, 1.0 �middle�, and 1.25 �bottom� and the pressure gradient
applied is G=1�10−6. The segment extends from x=20 to 100.
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FIG. 4. �Color online� Maximum absolute velocity along the
fracture channel for shear-thinning �top, n=0.75�, Newtonian
�middle, n=1.0�, and shear-thickening �bottom, n=1.25� fluids for
various applied pressure gradient G. Each maximum velocity curve
is normalized by the corresponding ūx, the average flow velocity in
the x direction.
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thickening case, where typical velocities are larger, the maxi-
mum velocity values are larger off the peaks values and fur-
thermore exhibits rather more variation with x and Re than
the other fluids.

The probability distribution of velocity magnitudes is also
of interest �8�, since the presence of low and high velocity
components strongly influences mixing processes and trans-
port of passive tracers and suspended particles �19�. Histo-
grams of the observed absolute value of the velocity for the
three fluids at various pressure gradients are shown in Fig. 5.
In all cases there is a peak near the origin, which reflects the
numerous low-velocity zones in the crevasses at the fractures
walls, along with a higher-velocity peak resulting from the
rapid flow in the channel constrictions. The latter moves out
to higher values as the pressure gradient increases �note the
normalization by ūx in the figure�. Once again, the shear-
thickening case behaves somewhat differently than the other
two fluids, showing a less prominent and broader “constric-
tion peak,” and more variation with G.

B. Pressure and stress field

The distribution of pressure and stress in the fluid are
important for non-Newtonian rheology and in considering

possible erosive processes on the fracture walls. To contrast
the behavior of the different fluids, Fig. 6 shows the pressure
“fluctuations” along the channel for the three power-law flu-
ids n=0.75, 1.0, and 1.25. The fluctuation p� is the deviation
in pressure from the imposed linear gradient, which would
vanish identically in a Hele-Shaw geometry. In the figure, the
fluctuation has been normalized by the imposed pressure dif-
ference, �p=GL, and averaged over the channel width. For
all three fluids, the pressure fluctuations are most significant
in the vicinity of the main constrictions in the channel where
the fluid accelerates, rising just before each constriction’s
location and dropping rapidly as it is traversed. Some addi-
tional structure arises at positions x of bends in the flow path,
another source of fluid acceleration. Again, the shear-
thinning and Newtonian fluids behave somewhat similarly,
while the variation is strongest in the shear-thickening case.

The variation in fluctuation with imposed gradient is
shown in Fig. 7 and indicates the expected general increase
in magnitude with G along the channel. To assess the effects
of the flow on the fracture wall, we first calculate the average
force exerted by the fluid on the wall,

F =
1

L
� d � n̂ · � , �10�

where the integral runs over the fracture surface �a curve in
this two-dimensional calculation�, and n̂ is the local normal
to the wall. The force is then decomposed into x and y com-
ponents, representing the average drag and lift on the wall,
respectively, and then normalized by a typical inertial pres-
sure �ū2 /2 times the nominal surface area L�1, to give drag
and lift coefficients

d =
Fx

L�ū2/2
, l =

Fy

L�ū2/2
. �11�

Note that aside from the �reasonable� use of the inertial pres-
sure, the remainder of the normalization is a fixed constant
for each fracture and serves to provide dimensionless drag
and lift coefficients. The drag and lift forces for the lower
and upper walls of the channel are similar but not identical
because of the asymmetry of the fluid-solid boundary, and
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FIG. 5. �Color online� Distribution of normalized absolute ve-
locity in the whole self-affine fracture flow domain for different
power-law fluids with pressure gradients G=1.0e−6, 5.0e−6, and
1.0e−5 �top to bottom�.
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G=1.0e−5.
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for definiteness we present only the forces on the lower wall.
The results of calculating the drag and lift coefficients are

shown in Figs. 8 and 9 for the three fluids with exponents
n=0.75, 1.0, and 1.25. In all cases, the coefficients exhibit
simple power-law behavior, provided G is not too large, and
the transition to a different behavior at larger G may be as-
sociated with the onset of inertial effects �see the following
section�. This form of scaling behavior result is consistent
with the experimental results reported in �10�, and the values
of the slopes found in the log-log plots in the low-G range,
−1.67, −1.02, and −0.62, for n=0.75, 1.0, and 1.25, respec-
tively, for both drag and lift, may be understood from the
following argument.

If inertial effects are absent, one expects the scaling be-
havior in a rough channel to be the same as in a straight
channel. In that case, from Eq. �7� one has u�G1/n, and
therefore �u�G1/n as well, so that ����u�n−1�G�n−1�/n.
The drag and lift forces are proportional to the stress, �
���u�G�n−1�/n+1/n�G1. The drag and lift coefficients are
then d , t�Fx,y / ū2�� /u2�G1−2/n, giving exponents −5 /3,
−1, and −3 /5, respectively, for the three fluids.

IV. PERMEABILITY

Next we consider global behavior—the permeability of a
self-affine fracture channel. Our discussion is colored by
analogies to flow in intergranular porous media, so we first
recall the situation in that system �20�. For Newtonian fluids
in the low Reynolds number limit, the definition of
intergranular permeability is given by Darcy’s law,
�u�=−�k /���p, where �u� is the average flow velocity and p
the average pressure. The average in question could be a
volume average or an ensemble average, and for a flow
which is macroscopically unidirectional, an operational defi-
nition of permeability is k=�QL /A�p, where Q is the flux
through a sample of cross-sectional area A and length L. In a
two-dimensional situation, the area is replaced by the width
W, and Q is the flow per unit length in the third direction. A
definition identical to the latter case may be used for the
permeability of low Reynolds number Newtonian flow in
a fracture. Both finite Reynolds number flow and non-
Newtonian fluid rheology modify this description. We first
consider the effects of inertia and then examine how perme-
ability relates to the fracture morphology.
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FIG. 7. �Color online� Pressure fluctuations of different fluids
with power n=0.75, 1.0, and 1.25 and m=0.01 along a self-affine
fracture channel under different applied pressure gradients.
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A. Inertial effects

At higher flow rates when inertial effects appear, the re-
lation between pressure difference and average velocity or
flux becomes nonlinear and one may write

�p = �Q + �Q2 or �Q3� , �12�

where � incorporates the Darcy permeability, and the term in
brackets is the inertial correction, with � ,�0. At high Q
the quadratic or “Forchheimer” term applies, but in the tran-
sitional region where the Reynolds number is small but fi-
nite, a cubic dependence is found. This picture is supported
by experiments, analytic calculations, and numerical simula-
tions �21�.

The flow of a Newtonian fluid in a self-affine fracture can
be described in identical terms, as shown by the numerical
simulations of Skjetne et al. �8� which exhibit the same tran-
sitions between flow regimes indicated in Eq. �12�. In ex-
tending the discussion to power-law fluids, the first issue is
to choose the appropriate power of Q. The exact solutions for
Hele-Shaw flow given in Eq. �8� have the scaling behavior
G�Qn where G is the applied pressure gradient �the relevant
pressure for macroscopic behavior� and n the power-law in-
dex. In a rough fracture, one would naturally expect an iden-
tical relation, albeit with a modified coefficient, at low G,
and then at larger G inertial effects would be expected to
produce �positive� terms involving higher powers of Q. To
test this idea, note that we are concerned here with the sta-
tistical behavior of self-affine fractures, rather than the de-
tails of flow in one particular geometry which was relevant
in the previous section, so an ensemble average over six
realizations of the fracture surface is used. The simulation
results are shown in Fig. 10 and indeed show a G�Qn scal-
ing behavior at low G. The Newtonian n=1 plot shows this
behavior clearly since G /Qn is constant at low Q, whereas in
the other cases, the expected behavior is present at suffi-
ciently small Q as indicated in the alternative plots in the
insets of G vs Q. The need for different plotting variables
arises because in the non-Newtonian cases, the flow rate
fluctuates substantially at low G and division by Qn is nu-
merically unstable. Beyond the quasilinear regime, the New-
tonian case shows the expected transition to a Forchheimer
flow regime G�Q2 at larger forcing, and the shear-
thickening fluid shows a somewhat analogous behavior G
�Q2n. The shear-thinning fluid is not described by a simple
power law at large G, and we are not aware of any theoret-
ical treatment of this problem, so we simply report the nu-
merical results.

To understand the numerical coefficient in the flow re-
sults, the fracture-modified Darcy permeability, we again re-
fer to the Hele-Shaw case and define

k =
m1/nū

G1/n . �13�

Since the roughness and tortuosity of the fracture cause the
streamlines to bend and viscous dissipation to increase, the
permeability should be reduced compared to a smooth and
flat Hele-Shaw geometry of the same aperture. In Table I the
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FIG. 10. �Color online� Relation between imposed pressure gra-
dient and fluid flux for power-law fluids: n=0.75, 1.0, and 1.25 �top
to bottom�.

TABLE I. Effect of roughness and tortuosity on the low Rey-
nolds number permeability: k0 and k are the permeabilities �defined
in Eq. �13�� for a Hele-Shaw cell and a self-affine fracture of the
same mean aperture, respectively.

Fluid index k0 k

n=0.75 2.99 0.373

n=1.0 33.2 4.73

n=1.25 142 20.6
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various permeabilities are compared and a reduction by a
factor of 6 to 7 is found.

So far, we have expressed the pressure gradient G in
terms of the flux Q because these quantities are well-defined
in the present simulations. However, for general purposes it
is preferable to use a dimensionless quantity such as the Rey-
nolds number as the independent variable, but the definition
of Re for power-law fluids is not entirely obvious because
the viscosity varies over the flow domain. One way to com-
bine the results for different fluids is based on an analogy to
the friction factor scaling laws for flow in pipes originally
due to Nikuradze �22�, which can be extended to non-
Newtonian fluids as shown by Metzner �23�. Recall that for
unidirectional flow of a Newtonian fluid of viscosity � in a
pipe of diameter D, the mean velocity is ū=GD2 /32� and
the shear stress at the wall is 	w=GD /4, so if one defines the
conventional friction factor as f =	w / 1

2�ū2, then one finds f
=16 /Re where Re=�ūD /�. Experiments follow this scaling
law up to a value of Re that depends on the roughness of the
pipe, and at larger values of Re, f levels off. An analogous
calculation for Hele-Shaw flow using the apertureH instead
of the diameter D gives 	w=GH /2 and f =12 /Re. The
power-law generalization is to use the latter form for 	w
along with Eq. �8� to express the pressure gradient in terms
of the mean velocity and yields

f =
12

Re
if Re � 6�ū2−nHn/m�, �14�

where m�=m�2�2n+1� /n�n. This choice of variables is not
the last word because in the analogous intergranular porous
medium case where a similar approach has been taken �10�,
extra constant factors such as functions of the porosity or the
“dynamic specific surface area” are introduced into the fric-
tion factor and Reynolds number definitions to promote data
collapse. It is not clear how such ad hoc factors might be
interjected here, so instead we collapse the data using a
simple constant factor which varies from fluid to fluid, and
the result is shown in Fig. 11. Two different values of the
Hurst exponent are shown, and in both cases we see an f

�1 /Re scaling at low Re, a transition at Re�1–10 and
perhaps a constant friction factor at larger Re. Unfortunately,
the calculations cannot be extended into the latter regime
using the present method �a particular implementation of the
lattice Boltzmann technique� because numerical instabilities
arise.

B. Morphology effects

We now consider how the geometry of the fracture affects
the �low-Reynolds number� permeability for the various flu-
ids considered. First we investigate the effect of the Hurst
exponent � on the permeability, and to simplify the analysis
we consider a fracture channel with one self-affine wall and
one flat wall, as in �6�. For a fixed pressure gradient G, we
compute the flux as a function of the channel length L for the
three fluids, and in Fig. 12, we first show the flow rate deple-
tion �Q0−Q� /Q0 vs L for a fracture with �=0.8. Here Q0 is
the flux through a flat-walled channel of the same mean ap-
erture. Increasing the length allows for more fluctuation in
the channel width �see Eq. �2�� which increases the tortuosity
and tends to decrease the flux. If the Hurst exponent of the
channel’s rough wall is instead �=0.5, the three fluids again
behave quite similarly, so it suffices to compare the behavior

100

101

102

103

104

105

106

107

108

10-5 10-4 10-3 10-2 10-1 100 101 102 103

f

Re

n=0.75,ζ=0.5
n=1.0,ζ=0.5

n=1.25,ζ=0.5
n=0.75,ζ=0.8

n=1.0,ζ=0.8
n=1.25,ζ=0.8

FIG. 11. �Color online� Friction factor of self-affine fracture
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of different Hurst exponents for a single case, and in the
lower panel of the figure we plot the flux depletions for the
two exponents for the shear-thinning case. The fact that the
flux depletion is greater for the �=0.8 channel may be ex-
plained by noting that this exponent value corresponds to
more fluctuation as a function of L than the 0.5 case, and
therefore to a more tortuous channel.

To relate the flux to the channel aperture, we imagine
dividing the channel into a sequence of nearly straight sec-
tions, each of length �i, and writing the total pressure differ-
ence as the sum of the pressure drops in each section, using
Eq. �8� for each. This reasoning yields

�P = �
i

�Pi = �
i
�Q

2n + 1

n
bi

−�2n+1�/n�n

m2n+1li, �15�

where the summation is over the sections, and bi is the ef-
fective aperture and li is the length along the local flow di-
rection in section i, and we have noted that Q is the same in
all sections. If �i is the angle between the orientation of
channel section i and the mean flow direction, then bi
=H cos �i and li= li

 /cos �i, where H is the aperture and l is
the projected length of section i in the mean flow direction,
assumed to be the same for all sections. Using these relations
in Eq. �15� we have

�P = 2mQl�2
2n + 1

n
H−�2n+1�/n�n

�
i

�cos �i�−�2n+2�.

�16�

This result generalizes Eq. �26� in �6� to power-law fluids,
and if we proceed as in that reference to evaluate the average
over angles �i we obtain

Q − Q0 � H�2�−2�/�+�2n+1�/n, �17�

where again Q0 is the flux in a flat channel of the same
aperture H.

To test the relation �17�, we calculate the flow for fracture
channels of length L=256 with varying apertures H=8, 12,
16, 20, and 24, for fluid with m=0.01, n=0.75, 1.0, and 1.25,
all at a pressure gradient �P /L=1.0e−6. Figure 13 shows
the flux depletion �Q0−Q� as a function of aperture. The
points are the numerical results and the solid lines are fitted
curves, based on the expected power-law exponents obtained
from Eq. �17�, which are 2.83, 2.5, and 2.3 for the three
fluids. We see that the theoretical analysis is in excellent
agreement with the data for the shear-thinning and Newton-
ian fluids �n=0.75 and 1.0�, but the agreement is less satis-
factory for the shear-thickening fluid, whose numerical ex-
ponent is closer to 2.5. A possible interpretation is that in the
shear-thickening case, for the same pressure gradient the av-
erage velocity is larger than that for the other fluids, so that
fluid inertia comes into play.

Finally, we consider an additional effect, a lateral shift
between the two sides of a fracture, which might arise in
practice due to geological processes. We begin with a frac-
ture channel with complementary sides and constant initial
aperture H, and then shift one side along the mean plane by
a distance d. The fracture aperture is now a function of po-

sition, Hd�x�, and effectively a spatial random function. We
again compute the flux depletion relative to a flat channel
having the same initial aperture using six realizations of a
self-affine fracture wall with Hurst exponent �=0.8. As
shown in Fig. 14 the flux decreases somewhat faster than
linearly with shift by producing narrow gaps when protur-
bances on the two sides are brought closer to one another.
The shear-thinning and Newtonian fluids have a fairly simi-
lar behavior, while the reduction is twice as large in the
shear-thickening case, perhaps again as a result of inertial
effects. As in the previous discussion, using a different value
�=0.5 for the Hurst exponent gives the same trends.

V. CONCLUSION

Using a different implementation of the lattice Boltzmann
method for power-law fluids, we have investigated their flow
in two-dimensional self-affine fracture channels as a function
of applied pressure gradient. Generally, fluids with different
power-law index behave in a similar manner when their flow
parameters are properly scaled, using standard results for
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flow in constant-thickness channels. Many previous results
for Newtonian fluids in self-affine fractures are found to
generalize in a straightforward manner. However, shear-
thickening fluids, which have higher velocities for the same
pressure gradient than Newtonian or shear-thinning counter-
parts, are more susceptible to inertial effects.

With regard to the local flow fields, we first considered
the maximum absolute velocity as a function of distance
along the mean flow direction, which was found to fluctuate
along the fracture channel due to its tortuosity and the vari-
able effective aperture along the channel. The local maxima
of this maximum absolute velocity occur at points of narrow-
ing or minimal effective aperture, and the range of maximum
absolute velocity relative to the global mean velocity ranges
from about 1.5 to 5.5. With increasing inertia, this normal-
ized maximum absolute velocity increases for all power-law
fluids to different degrees, with shear-thickening fluids hav-
ing the largest effect and shear-thinning the least. As the
pressure gradient increases, the normalized maximum veloci-
ties near the constrictions are relatively constant but outside
these points velocities tend to increase. The variation in ve-
locity is greatest for a shear-thickening fluid and the least for
shear-thinning. Pressure fluctuations along the channel in-
crease with forcing for all fluids and for a given pressure
gradient increase with the power-law index n.

The relationship between pressure gradient and flux is
found to have the same functional form as for flow in a flat
channel, �p�Qn, when inertial effects are absent. At higher
�p, Newtonian fluids behave in the same way as in inter-
granular porous media, and shear-thinning fluids behave
analogously, but the shear-thickening case does not show
simple power-law behavior. It is possible to collapse all of
the data on flux vs pressure gradient into a universal friction
factor curve. The variation of flux with system length was

shown to scale with system length with an exponent algebra-
ically related to the Hurst exponent, in a manner which gen-
eralizes the Newtonian case.

While our calculations were restricted to two-dimensional
flows with specific rheological constitutive laws, there is no
difficulty whatsoever in extending them to three dimensions,
and to any constitutive relation not involving memory ef-
fects. We chose two dimensions for reasons of calculational
efficiency alone, relying on the analogy to intergranular po-
rous media flows to infer that the functional form of the
results would not change. Note that this analogy applies only
to mean flow quantities such as average pressure and flux
which appear in Darcy-like laws, and not to the microscopic
flow field within the pore space or fracture aperture. Like-
wise, the restriction to power-law fluids was made solely to
focus our efforts on the most common situations.

The most interesting question raised by these results is the
form of the flux-pressure gradient relationship in the regime
of strong inertia in the non-Newtonian case. In this work, we
were limited in the range of accessible pressure gradients by
numerical instabilities, and it would be desirable to improve
the algorithm so as to consider higher pressure gradients and
further explore the dynamics of the inertial regime. An ex-
tension of these considerations to viscoelastic fluids is like-
wise highly desirable, but new ideas beyond the methods
used here are needed.
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